# KamLAND $4\pi$ control system

Fred Gray – University of California, Berkeley  $4\pi$  Workshop and Review, Berkeley, May 16, 2005

- Successful demonstration yesterday! ...may make this talk partially redundant.
- $\blacktriangleright$  The electrons in this talk are  $\sim$ 90% recycled.

# Multiple layers of protection

...against mistakes that might damage the detector:

- 1. Written deployment protocol.
- 2. Operator required to move in small steps where necessary.
- 3. Pre-verification of commanded motion.
- 4. Continuous cross-checks between various position measurements.
- 5. Immediate stop if measured position goes outside allowed region.

#### Control hardware



### Control hardware



#### Control software

Display software is more complex and failure-prone, so it is separated from the control software:



- If display program crashes, there is no effect on control program.
- ▶ If control program crashes, current motion is safe: each step is pre-approved before the motion command is issued. Also, timeout will occur.
- Either program can simply be restarted if necessary.

# Stages of deployment

- During assembly of pole: use external manual controller (no constraints).
- Tare procedure with top segment held in pin block.
- During calibration, until pole withdrawal begins, all constraints are enforced:
  - All position measurements in agreement:
    - Primary: cable lengths from encoder pulley
    - Cable lengths from motor encoder
    - Instrumentation unit pressure sensors
    - Instrumentation unit accelerometers (tilt sensors)
  - Physics model indicates all components of system in bounds.
    - Allowed sphere, allowed cylinder
  - Slack in lower cable does not exceed specified value.
  - ▶ Each step must be OK even if one motor fails ( $\sim$  10 cm steps in critical region).
- During pole disassembly, shift back to manual controller.

# Geometry and physics



- Except for one angle, dynamics of system are determined entirely by geometry.
- Numerical minimization of gravitational potential energy as  $\theta_1$  is varied (buoyant forces, weight of cables, etc. could be included easily).
- Currently, width of pivot block is neglected (numerical stability issue?).

# Remaining tasks (shown in Gatlinburg)

- ► Integrate instrumentation units: add cross-checks between cable length and accelerometers/pressure sensors.
  - ► Currently solving electrical problems. (✓)
- ▶ Retension cables and recalibrate motor vs. pulley encoders. (√, but need to do it again!)
- ▶ Re-enable the cross-checks that have been disabled for testing of partial system.
- Repeat survey measurements.
- Insert real detector geometry.
- Provide easier access to history information (partially done: logging to database as well as text file).